
Weeder Technologies AN200

Copyright 2000 - 2016 by Weeder Technologies Page B-1

 Technologies AN200

INTRODUCTION

To communicate with and control the stackable
data modules from a host, simple ASCII
character strings are used. The command sets
supported by these modules consist of groups of
characters that form data packets. The syntax of
these packets are specifically designed for user
simplicity as well as leanness to minimizing the
load demand on the communications bus. This
application note explains some of the details of
the communications protocol and examines
standard practices which should be observed
when setting up software control routines using
a PC, laptop, or single-board computer as a
host.

DATA PACKET FORMAT

A command string used for control or data
transfer between the host and a stackable data
module is delivered in the form of a packet made
up of standard ASCII characters. To reduce the
size and thus minimize data bus congestion, the
packets are constructed in a manner which
eliminates the need for delimiters separating the
different fields of the packet. With the exception
of the numerical data field, all fields are confined
to a single character.

The first field in a packet will always be the
header character which denotes the physical
address of the module transmitting or being
targeted by the host. A packet is always

terminated with a carriage return (0D Hex or 13
Dec). The actual length of the packet will vary
from command to command depending on the
amount of data that must be transferred to
perform the desired function. The field following
the header will be an upper-case letter indicating
the command title. In cases where the command
can be directed to more then one channel on a
board, an additional field immediately following
the command title will contain a character which
indicates the channel number associated with
the command. Any numerical data will always be
transmitted in the last field of the packet and will
be in ASCII format.

PACKET TIMING RESTRICTIONS

As shown in figure 1, each character or byte in a
data packet should be transmitted sequentially
with no more then 8 mark bits (833 µS)
separation between individual bytes throughout
the entire packet. Furthermore, there should be
at least a 1 mS silent period between all data
packet transmissions regardless of the direction
the packet is traveling on the communications
line. These two stipulations are required to fulfill
the multi-drop, anti-collision technique used by
the communications protocol at the physical
layer.

Although the separation between individual
bytes in a packet should conform to that
mentioned above, in actuality, a data module
could successfully receive a packet which

Note: The number of data bytes between the Command Title and the Carriage Return will vary depending on command.

FIGURE 1: DATA PACKET FORMAT

e e d e r

 90-A Beal Pkwy NW, Fort Walton Beach, FL 32548 www.weedtech.com 850-863-5723

Host Programming Guidelines

0 to 8
Mark

Bits

0 to 8
Mark

Bits

0 to 8
Mark

Bits

0 to 8
Mark

Bits

0 to 8
Mark

Bits

0 to 8
Mark

Bits

Silent
Period

≥1mS

Data Packet Data Packet

Header
Character

Command
Title

Channel
Number

Numerical
Data Byte

Numerical
Data Byte

Numerical
Data Byte

Carriage
Return

Header
Character

Author: Terry J. Weeder

Weeder Technologies AN200

Copyright 2000 - 2016 by Weeder Technologies Page B-2

Some single-board computers do not
incorporate the higher level communications
functions common with programs running on a
PC or laptop. In these cases, the multi-byte
numerical data must be processed on a byte
level. To do this, simply read each character
individually and perform the following arithmetic:

� Get first digit and place in register "A".

� If another digit received, multiply register "A"
by 10, then add the new digit to it.

� Repeat the last step until receiving a carriage
return. Register "A" will contain the result.

Keep in mind that these digits are transmitted in
ASCII format. To convert to decimal, strip off the
upper nibble of each byte before adding it to
register "A".

RECEPTION CONFIRMATION

There are two basic command types, "active"
and "passive". An active command requests
some form of real time data from the module it is
talking to, or instructs a module to begin some
form of conversion or operation. This could be a
voltage reading, frequency measurement, ramp
execution, timer run-off, etc. In these cases, the
host will be waiting for a result or indication that
the process has been completed.

A passive command, on the other hand, does
not request data from a module, it simply sets a
configuration variable or adjusts an operating
parameter of some sort to be used later on in a
process. To verify reception of a passive
command, a data module will echo the
command string back to the host after loading it
into its memory. The host can use this response
to confirm delivery of the command.

In some applications it may not be necessary to
utilize this reception confirmation, however the
user must be aware of the presence of this
return data. IMPORTANT: Each time a passive
command is sent to a data module, the return
confirmation will be loaded into the
communications buffer at the host end. This data
will remain in the buffer and be retrieved the
very next time the host reads the COM port even
if the host is trying to capture data from a
subsequently issued active command. This will
cause confusion to the most adept programmer
if not expected or considered.

If the reception confirmation feature is not
needed in a particular application, simply read

contains a silent period of up to approximately
1.2 seconds. Anything longer however, will
cause the internal watchdog timer to expire, in
which case the error message will be returned to
the host. CAUTION: Violating the maximum byte
separation within a packet will cause problems if
more then one data module is connected in the
network. This is due to the fact that the
un-addressed modules down the line will treat
the break in the data flow as a start of a new
packet.

A common mistake is to use a terminal program
to transmit commands to a data module one
character at a time as they are being typed in
from a keyboard. Although this will work if typing
very quickly, and as long as only one module is
being used in the network, it is best to build a
complete packet ahead of time and then
transmit it as a character string without any
breaks.

NUMERICAL DATA

The stackable data modules transmit and
receive numerical data in ASCII format. Hence,
the number 65,535 will be transferred one
character at a time, most significant digit first
(6 5 5 3 5). It is clear that the number of
characters will vary depending on the value of
the numerical data, as will the length of the field
used to deliver it. Fortunately, most software
platforms provide input and output function calls
which automatically convert data to and from
this format so the user does not have to be
concerned with the fundamentals. The stackable
data modules use a similar form of input/output
conversion functions built in to their
communications routines. If need be, when
sending data from the host, the user can pad the
most significant digits with 0's to force all
numerical data to a specific character length, but
this is not necessary and most often not
practiced.

The command sets include many operations
which require some form of numerical data to be
passed back to the host. Because this data will
always lie within the last field before the carriage
return, the host can capture the data with a
standard INPUT statement using the carriage
return as the field delimiter. For instance, the
host should read each of the proceeding single
character fields (header, command title, channel
number, etc.) one byte at a time, and then grab
the numerical data with a multi-byte input
statement as if reading it from a sequential file.

Weeder Technologies AN200

Copyright 2000 - 2016 by Weeder Technologies Page B-3

sand dump the contents of the COM port buffer
after every passive command that is issued by
the host. This will assure that the buffer remains
empty and ready for live data input from one of
the modules. In fact, it is good practice to always
follow each output statement with an input
statement when transmitting a command from
the host.

CONTINUOUS DATA ACQUISITION

When operating one or more data modules in a
continuous data acquisition mode, it is very often
desirable to have the host transmit and receive
data packets at the fastest rate possible. In
these circumstances, great care must be given
to assure the absence of any data packet timing
violations. For example, consider the following
programming loop.

� Host sends a command to read something
from board "A".

� Host waits for board "A" to respond then
sends a command to read from board "B".

� Host waits for board "B" to respond and then
goes back to the first step.

The operation above will be in direct violation of
the timing restrictions. Why? Examine the
second step in the loop. As soon as board "A"
responds, the host immediately sends a data
packet to board "B". Because there is no timing
gap between the packet transmitted by board
"A" and the packet transmitted by the host,
board "B" assumes that this is a continuation of
the previous packet and simply ignores it.

Note however, that if the host is sending
successive commands to the same board there
will not be a problem even though the timing
restrictions would still be in violation. This is
because the data module transmitting a
response has a clear indication of when its own
data packet ends, and thus when a new one
from the host begins.

To assure that all timing restrictions are met in a
multi-board continuous data acquisition network,
have the host wait at least 1 mS after receiving a
data packet from a module, before beginning its
own transmission. The flowchart shown in
figure 2 demonstrates the correct method for
sending commands from a host in a multi-board
configuration and taking advantage of the fastest
rate permissible by the communications
protocol.

Continue
Operation?

Send Passive Command
to Board “A”

Read Confirmation
from Board “A”

Send Passive Command
to Board “B”

Read Confirmation
from Board “B”

Send Active Command
to Board “A”

Wait for Result
from Board “B”

Wait for Result
from Board “A”

Send Active Command
to Board “B”

Delay 1 mS

Delay 1 mS

Delay 1 mS

Delay 1 mS

End

FIGURE 2: MULTI-BOARD ADDRESSING

R
U

N
 T

IM
E

 L
O

O
P

L
O

A
D

 C
O

N
F

IG
U

R
A

T
IO

N
 D

A
T

A

Yes

No

Weeder Technologies AN200

Copyright 2000 - 2016 by Weeder Technologies Page B-4

COMMUNICATIONS DIAGNOSTICS

There are a number of key features common to
the stackable data modules which provide clues
for communications diagnostics. With the
exception of the Multi-Drop Peripheral Interface,
when a unit is first powered up, it will transmit a
reset message which consists of the header
character, an exclamation point, and then a
carriage return. The user can verify this
transmission by watching the red LED flash as
power is applied. This reset indicator can be
used to test the receive routine running on the
host as well as confirm that a physical link has
been established with the host's receiver. When
transmitting a command from the host to a data
module, the red LED will turn on after receiving
the correct header character and then turn off
after receiving a carriage return. This will appear
as a quick flash and can be used to verify a
physical link with the host's transmitter.

A common user mistake will be to leave out the
carriage return at the end of a command string.
If this should occur, the data module will
continue to wait for the carriage return until
eventually the on-board watchdog timer expires
(after approximately 1.2 seconds) and causes
the error message to be transmitted to the host.
This 1.2 second delay will be visually noticeable
by the red LED staying on longer then a simple
flash, as is usually the case, and can determine
if the error indicator is reflecting a bad command
string, or simply one which is missing a carriage
return.

The flowchart shown in figure 3 details the
procedure used by a data module when
receiving a typical packet from the host. Note
that this is just an example and that the actual
number of characters being received will vary
from command to command. As mentioned
above, the red LED turns on after reception of a
valid header character and can be used to
confirm a proper link on the transmit line of the
host. So in other words, when sending a
command string to a data module, if the LED
flashes, the header character has been
successfully received as expected with no
communications error. Consequently, if the data
module is responding to the command packet
with the error message, it can be assumed that
the physical link is good, and that the error lies
in the construction of the actual data packet
transmitted by the host and not a fault in the
communications wiring.

 FIGURE 3: RECEIVE SUBROUTINE

Reception of Valid
Header Character

Turn On Red LED

Turn Off Red LED

Perform Operation

Wait for Bus to be Idle

Transmit Error
Message

Carriage
Return?

Wait for Next Character

Is
Character

Valid?

Wait for Next Character

Is
Character

Valid?

Wait for Next Character

Yes

Yes

Time out

Yes

No

No

No

Time out

Time out

